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Transistor design for extremely high frequency applications requires consideration of the
interaction between the device and the circuit to which it is connected. Traditional

analytical transistor models are too approximate at some of these frequencies and may not

account for variations of dopants and semiconductor materials (especially some of the

newer materials) within the device. Physically based models of device performance are

required. These are based on coupled systems of partial differential equations and typically
require 20 minutes of Cray computer time for a single AC operating point. A technique is

presented to extract parameters from a few partial differential equation solutions for the
device to create a nonlinear equivalent circuit model which runs in approximately 1 second

of personal computer time. This nonlinear equivalent circuit model accurately replicates
the contact current properties of the device as computed by the partial differential solver on

which it is based. Using the nonlinear equivalent circuit model of the device, optimization

of system design can be performed based on device/circuit interactions.

INTRODUCTION

The evaluation of the potential performance of semiconductor devices for analog applica-

tions is usually performed in two ways. First, the device may be characterized through small

signal admittance or scattering parameters which may be obtained by experiment for exist-

ing devices or by numerical simulation for a new device structure prior to fabrication. From
these results, the devices can be characterized in terms of small signal parameters such as

the unity gain cutoff frequency, ft, and fmax- While these parameters provide a valid est-
imation of the limits of the device operation under linear, small signal conditions, such

estimate will typically be in error under large signal conditions. Under large signal, high

power conditions, nonlinear effects within the device become important. At low frequency,
the nonlinear effects manifest themselves primarily as bias dependent parameters such as

bias dependent transconductance and capacitance. At high frequency these parameters will

also exhibit hysteresis effects due to the nonequilibrium nature of transport within the
device.

1

As a result of these nonlinearities it is imperative that the performance of the device be

evaluated while embedded in its operational circuit. It is the device-circuit interaction and

resulting performance that is of interest and not simply the device characterization. Since it

is obviously too costly and time consuming to design, fabricate and test a new device and

then design, test, and redesign a circuit around the device in hope of achieving the desired

performance, an alternative must be found. This alternative is numerical modeling. Funda-
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mentally, device-circuit interaction can be modeled using, equations to represent the device

and coupling the external circuit to it through boundary conditions. While this has been

and will continue to be done, it is presently too costly, even on the supercomputers available

today, for all but the simplest of circuits. As a result, devices are approximated by nonlinear

equivalent circuit elements in the large circuit simulation procedures. The adequacy of

these equivalent circuit models has a direct impact on the predicted results.

In an effort to improve these device models Madjar and Rosenbaum [1] and Khatibzadeh

and Trew [2] have developed procedures in which the FET is modeled by a system of non-
linear ordinary differential equations relating the gate and drain currents to the time

dependent gate and drain voltages. The coefficients of these ODE's are determined

analytically, using highly approximate models of the device. The present work is a signifi-

cant generalization of the approach of [1] and [2]. Here the coefficients of the ODE's

representing the device are determined numerically, through a physically based model; in

this case the drift and diffusion equations and the moments of the Boltzmann transport

equation. The resulting ODE representation is then executed, and the validity of the results
are verified at select operating points. With such an agreement established, the equivalent

circuit model can then be used with a higher degree of confidence in a complex circuit
simulation and device/circuit optimization.

This study is based on three concepts. First the entire program is based on large signal

concepts. Most large signal predictions of device performance are based upon small signal
concepts; the assumption being that a 'good' small signal device is also a 'good' large signal

device. Thus quantities such as the cutoff frequency, fmax, etc., have been used to assess

device performance. However, this is not appropriate since the power requirements for
MIMIC applications preclude small signal operation. MIMIC devices will be operated

under large signal conditions, and large signal assessment of device performance is
required.

Second, the computational device physics model is based on the drift and diffusion

equations (DDE) for the 20-40 GHz range and on the nonequilibrium balance equations
obtained from the first three moments of the Boltzmann transport equations (MBTE) for

the 40-100 + GHz range. The MBTE equations include the effects of carrier acceleration

and velocity overshoot that are increasingly important as the frequency of interest increases

and feature size decreases. Both analyses include the effects of processing parameters on
device performance.

Third CAD compatibility was achieved by linking the DDE and MBTE analyses to

nonlinear equivalent circuit analysis developed under a study sponsored by the National

Science Foundation [3]. The nonlinear equivalent circuit model based on DDE or MBTE

computed characteristics permitted very rapid (less than 1 second of Cray computer time)

calculations of large signal AC performance of a device that accurately reproduced the
more costly full calculations.

Coupling the nonlinear equivalent circuit model with the DDE and MBTE permits, for the
first time a capability of performing fast and accurate calculations that describe

device/circuit interactions. The nonlinear equivalent circuit model is compatible with

commercially available CAD software and would run on a workstation. The nonlinear
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equivalent circuit model has been coupled to a numerical optimization program and used to
determine realistic goals for device/circuit performance.

Physical Modeling

The key element of the simulation is the system of partial differential equations used to
describe the transient transport of electrons and holes in the devices. Drift and diffusion

equations (DDE) are commonly used to describe transport in unipolar and bipolar devices.

While these equations are valid at the low end of the frequency scale, they are incorrectly
applied at higher frequency scales, typically those in the range of 40 + GHz or when
structural feature sizes are reduced. For GaAs based devices this is in the sub-2500 A

region. When DDE procedures are inadequate the procedures of choice involve either the

moments of the Boltzmann transport equation (MBTE), or Monte Carlo (MC) methods.

Both MBTE and MC procedures are computationally more intensive that DDE

simulations. Unfortunately, Monte Carlo algorithms require the most intensive
computational resources, and are not presently practical for a CAD environment.

A brief description is now presented of the DDE and MBTE analyses and how SRA's
nonlinear equivalent circuit analysis is based on the results of the MBTE calculations.

Semiconductor Drift and Diffusion Equations

The governing drift and diffusion equations are the continuity equations for electrons and

holes and Poisson's equation:

- v • -N_n v(_b+_bn) + DnVN
0t

+ G - R (1)

--at = V • P_p V(#+_bp) + DpVP
+ G - R (2)

Veer# = e(N-ND-P+NA) (3)

L

where N and P are the electron and hole concentrations, respectively, and e is the electron

charge. The quantity within the square brackets represents the electron and hole currents

densities, "Jn/e and Jo/e,.. respectively, G represents generation, R recombination, 4, is the
potential, _ the permittivity, and N D and N A are the concentrations of donors and acceptor

ions, respectively. The terms '/'n and _bp are introduced to account for variations in the

conduction and valence band energy levels. Through q'n and q,p such effects as band gap
narrowing and heterojunctions may be accounted for.

Within the context of equations (l) through (3) materials such as gallium arsenide are

represented by field dependent mobilities with a region of negative differential conductivity
(NDC). While NDC is included in the subject analysis we point out that it is a feature

never included in the analytical representations of nonlinear devices.
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Moments of the Boltzmann Transport Equations

It is now commonly accepted that the major inadequacy of the drift and diffusion equations

is the use of equilibrium field dependent velocity relationships. Its usage is a statement that

acceleration is to be ignored. The MBTE overcomes this inadequacy.

The nonequilibrium MBTE are obtained by taking the moments of the Boltzmann
transport equation with respect to carrier density, momentum and energy. This yields a set

of governing equations which are similar in form to the equations utilized for multi-phase
flow in fluid dynamics. The governing equations reflect the conservation, or balance laws

of carrier density, carrier momentum and carrier energy and are written down for two

species of electrons namely, the central (small effective mass) and satellite (large effective

mass) valley carriers and one type of hole. Incorporation of holes is both for breakdown

consideration as well as for the possibility of buried 'p' layers in the design of FETS. The

balance equations follow.

Carrier Balance (or equations of continuity):

anl/at = -v,(nlV1)- nlP1 + n2P2- R (4)

a n2/a t = -v. (n2V2) + nlr 1 "n2P2 (5)

a n3/a t = -v • (n3V3) - R (6)

where n I and n 2 are the central valley and satellite valley carrier number densities

respectively while V 1 and V 2 are the corresponding velocities. I" 1 and P 2 are the
corresponding scattering rates for particle conservation, r' 1 represents scattering of carriers

from the F valley to the L valley in GaAs. P 2 is the return rate. R represents the net
recombination of electrons and holes, assumed to occur only through the £ valley electrons.

n 3 and V 3 are the number density and velocity of holes.

Momentum Balance (Newton's Law) for the Central Valley:

a (nlP1)/a t + v • (nlVlP1) + nlP1P 3 = "nleFn'VP 1"v "o 1 + n I[VI'V1/2 + T1/ml]vml

(7)

where there is a force contribution due to spatial variations in the effective mass. In the

above the momentum, P1, and the field, F n, are defined by

P1 -= mlV1 (8)

F n = -(v# + Vx/e) (9)

m I is the mass of the central valley carrier, e is the electronic charge, _ is the electric
potential and × is the electron affinity. F is the field due to potential differences and
conduction band discontinuity arising from material variations. The partial pressure, p 1, is

l /
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related to the central valley carrier temperature, T1, and number density by the perfect gas
relationship, which results from the assumption of Boltzmann statistics,

P = nlkT 1 (10)

where k is Boltzmann's constant, r'3 is the scattering rate for the central valley carrier

momentum. Contributions to r 3 include impurity, acoustic phonon, polar phonon,
nonpolar intervalley scattering. The effects of electron-hole scattering is accounted for

through an enhancement of the impurity scattering. The term v:o 1 represents the stress

forces. In this study, the stress tensor, o 1, is approximated by the relationship

o 1 = _7lVV1 (11)

where _ 1 is the viscosity associated with the central valley carriers. Similar momentum
conservation equations can be written for the satellite valley and for holes.

Energy Balance for the Central Valley Carriers:

There are various forms in which the central and satellite valley carrier energy equations

can be described. We choose to cast the energy equations in terms of the central and

satellite valley temperatures, T 1 and T 2.

o (nlT1)/a t +v • (nlVlT1) + (nlTlI" 5-n2T2F 6) =

-2/3[niT1 v • V 1 + o l:VVl/k-v. (r vT1)/k ]

+ 3Vl "Vlml[nl(2r 3 "r' 1) + n2F 2]-nlVlT1/ml" Vml

(12)

In equation (12) r 5 denotes energy relaxation within the central valley plus energy

exchange with the satellite valley; r 6 denotes energy exchange between the satellite and

central valley. All energy exchange between electrons and holes is ignored. A similar

energy conservation equations can be written for the satellite valley electrons and for holes.
In the energy balance equation for electrons and holes equations the contribution of the
recombination have not been included.

The potential is related to the total number density through Poisson's equation

v. _ v¢ = e[(n 1 +n2-no) -(n3-PO)] (13)

where n o is the donor density, Po is the acceptor density and _ is the permitivity.

In two dimensions, the complete problem description requires 13 equations consisting of 3

continuity equations, 6 momentum equations, 3 energy equations and a Poisson's equation.

The boundary conditions for potential are the same as used for the drift and diffusion

equations. At ohmic contacts, the boundary condition is given by the sum of the applied

bias and an appropriate built-in potential. The temperature of all carriers are assumed to
be at 300K at the ohmic contacts. The carrier densities at the contacts are fixed at the value

of local doping. For velocities, the normal gradient is taken to be zero.

L J
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Consideration of the External Circuit

Typically, in device simulations the voltage at the contacts are either fixed at a constant
value or a time dependence is specified. When an external circuit is introduced, the

voltage on the contact is determined by solving the device equations along with the circuit

equation. The external circuit thus represents a boundary condition as far as the device
simulation is concerned.

Transition of the Device/Circuit Results to Systems and Circuit Engineers.

The present study was predicated in two facts: (1) While the ideal way to transition the
technology of device physics and device-circuit interactions is to deliver to the systems

engineer a time dependent code that incorporates all of the partial differential equations

describing the device, and the ordinary differential equations describing the circuit, the long
run times generally associated with solving both the DDE and MBTE algorithms, rendered

this approach impractical for engineers. (2) The approach favored by engineers to allow

practical device-circuit interfacing is to obtain analytical representations of the dc current

voltage characteristics of a given three terminal device, as well as analytical approximations

for the relevant capacitances of the device, and then lump these parameters into a large
signal simulator that solves the following set of coupled ordinary differential equations [3]:

Ig(t) = Ig 0 [Vg(t),Vd(t-tl) ] + Cgg dVg(t-t2)/dt + Cdg dVd(t)/dt (14)

Id(t ) = Ido[Vg(t-t0),Vd(t)] + Cg d dVg(t)/dt + Cdd dVd(t-t2)/dt (15)

In the above the terms to, tl, t2, represent time delays associate with transit of carriers
between the gate and drain, drain and gate, and source and gate, respectively. The

capacitive contributions are functions of the gate and drain voltage, with the time delays

appropriate to the equation in which they appear. Equations of the type represented by

equations (14) and (15), which are "SPICE"-like equations, are then typically coupled to

harmonic balance programs.

Application of standard numerical optimization techniques with two-dimensional systems
of partial differential equations (DDE or MBTE) is conceptually straightforward.

However, implementation requires large computer resources, making it of limited interest

to device designers at this time. Use of the equivalent circuit analysis, equations (14) and

(15), results in very fast calculations that could be performed rapidly on a personal

computer. The issue then becomes the accuracy of the equivalent circuit model. Other
researchers [1] and [2] determine the coefficients and time delays from analytical

considerations. This is a useful approach for device designs and materials in operating

regimes that are well understood. The intent of the present work is to extend the utility of

the equivalent circuit model to materials, designs and operating conditions that are not well
understood. To achieve this goal the coefficients and time delays for equations (14) and

(15) are derived from solution of two-dimensional systems of partial differential equations.

This procedure obviates the need to make approximations that permit analytical

expressions to be written for the coefficients and time delays in (14) and (15). It also

permits extension of the analysis to other device designs and complex doping distributions.

L
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The procedures for obtaining the terms relevant to equations (14) and (15);

Cgg, Cdg, Cgd, Cdd, to, tl, t2

involves five broad steps. These are identified below.

(1) From the DDE or MBTE algorithm the dc characteristics of the device are obtained.

(2)

(3)

Perturbations of the dc characteristics are obtained as a function of gate and drain

voltage. Small changes in the net charge on the drain and gate contacts are

computed as a function of changes in gate voltage on the gate contact; leading to

values for Cgg and Cg d. A similar procedure yields involving changes in drain

voltage lead to values of Cg d and Cdd.

Time dependent calculations demonstrate that there are transit time delays
associated with the imposition of a signal on the gate contact and its observation on

the drain contact. Similarly a change in voltage on the drain contact will have its

effect on the gate contact delayed. Time dependent DDE or MBTE calculations are

performed and the time delays associated with this are represented by the terms to
and t 1. Time delay associated with the source-gate loop is represented by t 2.

(4) The above parameters are incorporated onto the ODE solvers of equations (14) and
(15).

A flow chart describing the above is shown below.

I
DDE or MBTE l
DC Solutions I

I
DDE or MBTE I

Time Dependent Solution I

I I

Nonlinear Equivalent]Circuit Model

The advantage of the ODE solver over that which incorporates solutions to the partial

differential equations is engineering time. A system of ODE solvers that can be used to

replicate the output of the two-dimensional physically based models could be effectively

|used by circuit engineers to represent the device in circuit codes. It is worthwhile noting
L 1
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that alternative formulations for fast calculations can be considered; e.g., quasi

two-dimensional analysis of Snowden and Pantoja [4]. To use such an analysis, the

predictions would be calibrated against an MBTE solution for the operating conditions of
interest.

RESULTS

The above equivalent circuit model was compared to the drift and diffusion calculation of

the FET of figure 1 in AC operation at 20, 40 and 60 GHz with a resistive load on the drain.

Lissajous of these calculations are presented in figures 2 and 3. Comparisons of three

power gain calculations at the same frequencies are shown in table 1. The lissajous, after
the initial transient, and the AC power calculations are well represented by the equivalent

circuit analysis.

Large Signal Circuit Dependent Results at 94 GHz

Large signal circuit dependent operation at 94 GHz was studied by connecting a 0.25

micron gate FET to a resistive load as shown in Figure 4. The drain battery voltage was set

at 3 volts. Since the computed current levels in the device were dependent on the analysis
used, the resistor was sized to have a one volt drop under DC conditions for a gate width of

300 microns. A sinusoidal voltage was applied to the gate at an amplitude of 0.5 volts and a

frequency of 94 GHz. The gate and drain voltages and currents are presented in figure 8 as

a function of time. The computed contact currents become periodic in time (steady AC) in
less than one cycle and show sinusoidal periodic behavior at all contacts. Nonlinear effects

which manifest themselves in gain compression, were not apparent at this gate bias level.

Nonlinear Equivalent Circuit Analysis at 94 GHz

The nonlinear equivalent circuit analysis of the recessed gate FET was implemented based

on the MBTE calculations. Curve fits were obtained for Id (Vg, Vd) and for the capacitive
coefficients in equations 14 and 15. Figure 5 and 6 show the equivalent circuit results in the

same form as the MBTE calculations. The lissajous are seen to have the same shape and
similar harmonic content. It should be noted that while the MBTE calculation required

twenty-five minutes of Cray Supercomputer time the Nonlinear Equivalent Circuit Analysis

required less than one second of time on a personal computer.

Load Pull Calculations at 94 GHz

To demonstrate the ability to perform load pull simulations, such a calculation was

performed by applying a sinusoidal signal at the gate with a magnitude of 0.5 volts. A
sinusoidal voltage was applied to the drain with a magnitude of 0.6 volts and a phase lag of

200* behind the gate signal. This calculation was performed using the DDE, MBTE and

the SRANEC analysis based upon the MBTE parameters. Figure 7 shows the Vg-Vd

lissajous figure for these three calculations. Figure 8 compares the computed output for the

load pull for each analysis. Note again the significant differences between the DDE and the
MBTE calculations.

l J
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To demonstrate the utility of the equivalent circuit model an optimization program was

mated to the equivalent circuit model. The optimization program drove the gate and drain

voltages sinusoidally with an imposed phase delay:

o
Vg = Vg + AVg sin (wt) (16a)

o
V d = V d + AV d sin (wt-_) (16b)

The following optimization problem was posed: For fixed Vg ° = -2 volts, Vd° = 4 volts
and zxVd = l volt what values of zxV,, and, will provide a power gain of 8 db at an input
power of 10 "2 watts. ,xV_ was constrained to be in the range 0_zxV__< 1.5 volts. This

problem was solved at a geries of frequencies from 10 GHz to 50 GHz using a
Quasi-Newton optimization procedure with BFGS updating. For frequencies from 10 to 20

GHz the desired power gain of 8 db was achieved. Above 20 GHz the power gain
decreased as a function of frequency as shown in figure 9. Solution of the above problem at

each frequency required 30 to 90 AC device calculations. This would be unreasonably time

consuming and expensive for a drift and diffusion analysis even on modern supercomputers.

Using the equivalent circuit model each optimization requiring 30-90 AC steady state
device calculations took approximately 1 minute of time on an IBM PC.

CONCLUSIONS

Using physically based research algorithms a nonlinear equivalent circuit analysis of a

transistor operating at extremely high frequencies (20-100 + GHz) can be generated. The

nonlinear equivalent circuit model reproduces transistor contact current in less than one

second of computer time that required approximately 20 minutes of Cray supercomputer

time suing the full physically based models. With this accuracy and concurrent run time

advantage, tranditional optimizatiton techniques can be brought to bear on the

device/circuit interaction problem.
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/
Figure 1. FET Schematic from Reference 5.

i

PHYSICAL PARAMETERS FOR THE 0.5 I_m GATE LENGTH GaAs
MESFET USED IN THE SIMULATION

GATE LENGTH

GATE WIDTH

CHANNEL THICKNESS

SOURCE TO GATE SPACING

DRAIN TO GATE SPACING

BUFFER LAYER THICKNESS

GATE METALUZATION

SCHOTTKY BARRIER HEIGHT

TEMPERATURE

DOPING OF ACTIVE LAYER

DOPING AT CONTACTS

SUBSTRATE IMPURITY LEVEL

0.55 I_m

300 l_m

0.15 pm

0.5 I_m

0.6 t_m

0.2 I_m

ALUMINUM

0.80 V

350 K

1.5 x 10 23 m "3

3.7 x 1023 m "3

1.0x 10 23 m3

Table l.
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Figure 7. Vg - V d Lissajous of Applied Signal in Load Pull Calculations at 94 GHz.
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F ]

DRIFT AND NONLINEAR
DIFFUSION EQUIVALENT

CALCULATION CIRCUIT MODEL

20 GHz 3.92 4.03

40 GHz 1.32 1.25

60 GHz 0.78 0.80

Table 2. Ratio of Output Power to Input Power - Comparison of Drift

and Diffusion Calculation and Nonlinear Equivalent Circuit.
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Figure 9. AC Power Gain versus Frequency at Fixed Input AC Power.
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